Free Probability, Sample Covariance Matrices and Stochastic Eigen-Inference

نویسندگان

  • Alan Edelman
  • Raj Rao
چکیده

Free probability provides tools and techniques for studying the spectra of large Hermitian random matrices. These stochastic eigen-analysis techniques have been invaluable in providing insight into the structure of sample covariance matrices. We briefly outline how these techniques can be used to analytically predict the spectrum of large sample covariance matrices. We discuss how these eigen-analysis tools can be used to develop eigen-inference methodologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applied stochastic Eigen-analysis

The first part of the dissertation investigates the application of the theory of large random matrices to high-dimensional inference problems when the samples are drawn from a multivariate normal distribution. A longstanding problem in sensor array processing is addressed by designing an estimator for the number of signals in white noise that dramatically outperforms that proposed by Wax and Ka...

متن کامل

Statistical eigen-inference from large Wishart matrices

The asymptotic behavior of the eigenvalues of a sample covariance matrix is described when the observations are from a zero mean multivariate (real or complex) normal distribution whose covariance matrix has population eigenvalues of arbitrary multiplicity. In particular, the asymptotic normality of the fluctuation in the trace of powers of the sample covariance matrix from the limiting quantit...

متن کامل

Inferring the eigenvalues of covariance matricesfrom limited , noisy

The eigenvalue spectrum of covariance matrices is of central importance to a number of data analysis techniques. Usually the sample covariance matrix is constructed from a limited number of noisy samples. We describe a method of inferring the true eigenvalue spectrum from the sample spectrum. Results of Silverstein which characterise the eigenvalue spectrum of the noise covariance matrix and in...

متن کامل

Inferring the eigenvalues of covariance matrices from limited, noisy data

The eigenvalue spectrum of covariance matrices is of central importance to a number of data analysis techniques. Usually, the sample covariance matrix is constructed from a limited number of noisy samples. We describe a method of inferring the true eigenvalue spectrum from the sample spectrum. Results of Silverstein, which characterize the eigenvalue spectrum of the noise covariance matrix, and...

متن کامل

Comparing Mean Vectors Via Generalized Inference in Multivariate Log-Normal Distributions

Abstract In this paper, we consider the problem of means in several multivariate log-normal distributions and propose a useful method called as generalized variable method. Simulation studies show that suggested method has a appropriate size and power regardless sample size. To evaluation this method, we compare this method with traditional MANOVA such that the actual sizes of the two methods ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005